
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2012

Effect of Platinum Particle Size on the Sulfur
Deactivation of Hydrogenation
Lyndsey Michelle Baldyga
University of South Florida, lyndsey.baldyga@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons, and the Chemical Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Baldyga, Lyndsey Michelle, "Effect of Platinum Particle Size on the Sulfur Deactivation of Hydrogenation" (2012). Graduate Theses
and Dissertations.
http://scholarcommons.usf.edu/etd/3966

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarcommons.usf.edu%2Fetd%2F3966&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

 
Effect of Platinum Particle Size on the Sulfur Deactivation of Hydrogenation 

 
Catalysts 

 
 
 

by 
 

 
 

Lyndsey Michelle Baldyga 

 
 

 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science in Chemical Engineering 
Department of Chemical & Biomedical Engineering 

College of Engineering 
University of South Florida 

 

 
 

Major Professor: John N. Kuhn, Ph.D. 
Venkat R. Bhethanabotla, Ph.D. 

Scott Campbell, Ph.D. 

 
 

Date of Approval: 
March 5, 2012 

 

 
 

Keywords: Heterogeneous Catalysis, Noble Metal, Size Dependence, Colloid 
Chemistry, Sulfur Tolerance, Ethylene Hydrogenation 

 

Copyright © 2012, Lyndsey Michelle Baldyga 
 



www.manaraa.com

Acknowledgments 

I would like to start by thanking my parents for providing me with 

financial support, via Florida Pre – Paid Program, for my undergraduate 

degree and emotional support during both of my degrees. My boyfriend, 

Austin Figler, was very supportive in my decision to get a graduate degree 

and was very patient during long days of writing and experimental work in 

the lab. Without the great leadership and advising of my thesis advisor, Dr. 

Kuhn, this thesis would have not been possible. My undergraduate advisor 

and thesis committee member, Dr. Campbell, was a great source of advice 

during both of my degrees in the department. Dr. Bhethanabotla, member of 

my thesis committee, has been a great source of advice during my graduate 

degree, and providing financial support, via an office job in the department. 

Without that job, I would have a lot more student loans and I cannot say 

enough how much that job meant to me.  Finally, Dr. Yusuf Emirov was a 

great resource in using the TEM machine in the NREC. Last but not least, 

Robert Tufts and Luis Maldonado were a great help in the NREC.



www.manaraa.com

 

i 

 

 

 

Table Of Contents 

List Of Tables iii 

List Of Figures iv 

List Of Equations vi 

Abstract vii 

Chapter 1: Literature Review 1 
1.1 Environmental Issues That Come From Fuel Processing 1 
1.2 Harm Of Sulfur Emissions 3 
1.3 Hydrotreating 5 
1.4 Hydrodesulfurization (HDS) 7 
1.5 Why A New Catalyst Is Needed 9 
1.6 Platinum As A Sulfur Tolerant Catalyst 10 
1.7 Catalyst Support Choice For Sulfur Removal 15 
1.8 Adsorption Of Sulfur On Platinum 16 
1.9 Control The Size Of Pt Catalyst Using Polyvinylpyrrolidone 

(PVP) 18 
1.10 Best Pt Size For Sulfur Removal 19 

 

Chapter 2: Procedure 22 
2.1 Pt Particle (2 nm) Synthesis 22 
2.2 Pt Particle (3.4, 4.3, And 6.8 nm) Syntheses 25 
2.3 Immobilization On Silica 27 
2.4 Characterization 29 

2.4.1 Transmission Electron Microscopy (TEM) 29 
2.4.2 X – Ray Diffraction (XRD) – General And Alignment 30 
2.4.3 XRD Experiments 33 
2.4.4 Temperature – Programmed Experiments 33 

2.5 Catalytic Experiments 36 
2.5.1 Ethylene Hydrogenation Without Sulfur 37 
2.5.2 Ethylene Hydrogenation With Sulfur 38 

 

Chapter 3: Results And Discussion 43 
3.1 TEM 43 

3.1.1 Platinum Nanoparticle Results (2 nm) 43 
3.1.2 Platinum Nanoparticle Results (3.4 nm Washed) 46 



www.manaraa.com

 

ii 

 

3.1.3 Platinum Nanoparticle Results (3.3 nm Unwashed) 48 
3.1.4 Platinum Nanoparticle Results (4.3 nm) 50 
3.1.5 Platinum Nanoparticle Results (6.8 nm) 52 

3.2 XRD Experiment (6.8 nm) 54 
3.3 Temperature – Programmed Experiments Results 55 

3.3.1 Temperature – Programmed Inert 55 
3.3.2 Temperature – Programmed Reduction (TPR) 56 
3.3.3 Temperature – Programmed Oxidation (TPO): Washed     

– 3.4 nm And Unwashed Particles – 3.3 nm 57 
3.4 Non – Sulfur Ethylene Hydrogenation Results 60 

3.4.1 Experimental Graphs 60 
3.4.2 Experimental Tables 64 

3.5 Sulfur Ethylene Hydrogenation Results 66 
3.5.1 Sulfur Concentration Used Calculation 66 
3.5.2 Results Of Gas Chromatography Experiments 67 

3.6 Sulfur Tolerance Of Platinum Nanoparticles 70 
 

Chapter 4: Conclusions 78 

References 79 

Appendices 84 
Appendix A: Journal Permissions 85 



www.manaraa.com

 

iii 

 

 

 

List Of Tables 

Table 1. Varying Precursor And Methanol Used 27 

Table 2. The Amount Of Silica Added To The Particle Solution 28 

Table 3. Mask Size And Alignment Settings For The 6.8 nm XRD Sample 33 

Table 4. The XRD Experiment Settings For Each Sample 33 

Table 5. Amount Of Catalyst Used Without Sulfur 37 

Table 6. Amount Of Catalyst Used With Sulfur 39 

Table 7. Ethylene Hydrogenation Conversion (40oC): No Sulfur 64 

Table 8. Ethylene Hydrogenation TOFs (40oC): No Sulfur 65 

Table 9. Averaged Steady State Bypass Results For Sulfur Experiments 67 

Table 10. Average Steady State Reaction Results For Sulfur Experiments 67 

Table 11. Conversion Values For Sulfur Experiments 68 

Table 12. TOF For Sulfur Experiments 69 

Table 13. Coordination Numbers (Che and Bennett) 75 

 

 

 

 

 



www.manaraa.com

 

iv 

 

 

 

List Of Figures 

Figure 1. Pathways of Hydrodesulfurization 8 

Figure 2. The Adsorption Of H2S On Pt At Three – fold, Bridge, And Top     

Sites 18 
 

Figure 3. Scheme Of 2 nm Synthesis 23 

Figure 4. Scheme Of 3.4, 4.3, And 6.8 nm Syntheses 26 

Figure 5. Reaction Without Sulfur 38 

Figure 6. Ethylene Hydrogenation Reaction With Sulfur 39 

Figure 7. Diagram Of GC Valve System 41 

Figure 8. 2 nm Pt Particles TEM Images  A: 2 nm Scale Bar, B: 10 nm     
Scale Bar, C: 20 nm Scale Bar 43 

 
Figure 9. Atomic Spacing Of 2 nm Platinum Particles 44 

Figure 10. Size Distributions Of The Pt Particles - A: 2 nm, B: 3.4 nm 45 

Figure 11. Size Distribution Of Pt Particles - A: 4.3 nm, B: 6.75 nm 46 

Figure 12. TEM Images Of 3.4 nm Pt Particles 46 

Figure 13. Atomic Spacing Of 3.4 nm Particles 47 

Figure 14. TEM Images Of 3.3 nm Pt Particles 48 

Figure 15. A: 3.3 nm Size Distribution, B: Atomic Spacing Of 3.3 nm   
Particles 49 

 
Figure 16. TEM Images Of 4.3 nm Pt Particles 50 

Figure 17. Atomic Spacing Of 4.3 nm Particles 51 

Figure 18. TEM Images Of 6.8 nm Pt Particles 52 

Figure 19. Atomic Spacing Of 6.8 nm Particles 53 



www.manaraa.com

 

v 

 

Figure 20. XRD Results Of 6.8 nm Pt Particle 54 

Figure 21. 3.4 nm 2% Pt Particles Washed Inert Experiment 55 

Figure 22. 3.4 nm Particles Washed TPR 56 

Figure 23. Washed 3.4 nm Particles TPO 57 

Figure 24. Unwashed 3.3 nm Particles TPO 58 

Figure 25. 2.0 nm Non – Sulfur Results: Ethylene Hydrogenation 60 

Figure 26. 3.4 nm Non - Sulfur Results: Ethylene Hydrogenation 62 

Figure 27. 4.3 nm Non - Sulfur Results: Ethylene Hydrogenation 63 

Figure 28. 6.8 nm Non - Sulfur Results: Ethylene Hydrogenation 64 

Figure 29. Comparison Of Sulfur Vs. Non - Sulfur Results 70 

Figure 30. Unwashed TPO 1.5 nm Experiment 73 

Figure 31. Washed TPO 1.5 nm Experiment 74 

Figure 32. Non - Sulfur And Sulfur Rate Vs. Particle Size 77 

 

 

 

 

 

 

 

 
 



www.manaraa.com

 

vi 

 

 

 

List Of Equations 

Equation 1 6 

Equation 2 13 

Equation 3 17 

Equation 4 65 

Equation 5 67 

Equation 6 68 



www.manaraa.com

 

vii 

 

 

 

Abstract 

 A large concern of the fossil fuel and renewable energy industries is 

the sulfur poisoning of catalysts. In the case of noble metals, such as 

platinum, it is seen that there is a size trend associated with the level of 

activity in the presence of sulfur. Smaller nanoparticles could be more 

tolerant due to sulfur surface vacancies. On the other hand, larger particles 

could have less deactivation because the sulfur is more attracted to the 

smaller particles and the sulfur molecules bind stronger to these smaller 

particles. 

 The size effect of sulfur deactivation was investigated by testing four 

sizes of nanoparticles, ranging from 2 – 7 nm with and without sulfur by 

running an ethylene hydrogenation reaction. The synthesized particles were 

characterized by mass spectrometry, X – ray diffraction, and transmission 

electron microscopy. The 7 nm catalyst resulted in being the most sulfur 

tolerant due to the sulfur particles binding strongly to the smaller particles.
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Chapter 1: Literature Review  

1.1 Environmental Issues That Come From Fuel Processing     

 Transportation is an essential part of today’s world.  Fuel processing 

for transportation causes a variety of problems. The problem that is currently 

in the spotlight is the emission of harmful chemicals into the environment. 

These emissions include carbon dioxide (CO2), methane (CH4), nitrous oxides 

(NOX), other hydrocarbons, sulfur, etc. In 2003, 27% of greenhouse gas 

emissions released into the environment could be attributed to the 

transportation industry. Greenhouse gases include, CO2, NOx, CH4, and other 

hydrocarbons. Greenhouse gas emissions are expected to increase by 48% 

by 2025 from the 2003 numbers. The United States only accounts for 5% of 

the world’s population but yet, this country produces around 21% of the 

world’s greenhouse gas emissions. (U.S. Environmental Protection Agency 

Office of Transportation and Air Quality). 
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Greenhouse gas emissions are not the only type of harmful gas 

emitted into the atmosphere from fuel processing, sulfur dioxide is another 

harmful gas. In 2009, sulfur in fuel was one of largest forms of air pollution 

worldwide (Zhanghuai, Lv and Lv). Emissions of sulfur dioxide has been 

attributed to many environmental and health problems (Environmental 

Protection Agency). Sulfur dioxide, SO2, emissions have decreased over the 

years due to strict regulations in place by the Environmental Protection 

Agency (EPA).  

Harm of the air emissions is only one problem when using and 

processing fuel. Fuel processing and usage also causes damage to land and 

consumes a large volume of water. Due to the inadequate amount of 

drinkable water available, this is a high priority issue for the transportation 

industry to solve (Annenberg Learner).  

Fresh water is a finite resource and every year 3000 km3 of fresh 

water is used that cannot be regenerated by natural means. This loss is due 

to various uses, including the transportation industry (Sufiyanov, Katalymov 

and Gol'berg). The Texas Water Development Board has estimated that 

between 2010 and 2060, Texas’s water supply would fall 18% and during 

this time the amount of people in the state would continue to increase. This 

would result in less water for an increased population (Annenberg Learner).  

The transportation industry consumes a large amount of water and 

also contaminates large amounts of water. The amount of wastewater each 

year that is dumped into lakes, streams, etc. is about 5*108 m3 each year. 
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There are five different types of wastewater that come from transportation 

industry. These types of wastewater include, contaminated and not cleaned, 

inadequately treated, pure with no treatment, treated, and mixed water from 

domestic and production sources. Of the five different types of waste water, 

mixed waste water is the most polluted. Fuel processing not only affects the 

air we breathe, but another life source, the water we drink (Sufiyanov, 

Katalymov and Gol'berg).  

1.2 Harm Of Sulfur Emissions 

Sulfur emissions harm the environment and also harm human health. 

Air pollution caused by sulfur emissions causes acid rain, haze, and mercury 

methylation. Acid rain occurs all over the world and in some areas where this 

rain falls, it can be one hundred times more acidic than normal precipitation. 

Even though high concentrations of sulfur emissions are limited to certain 

cities, these emissions will spread to cities where the sources of these 

emissions are much less prominent. Sulfur emissions also cause haze and 

mercury methylation (Environmental Protection Agency). Mercury 

methylation causes a variety of health problems. For example, in unborn 

children mercury methylation can cause central nervous system damage. 

(Harvi Velasquez).  

In addition the issues mentioned above, there are been many cases of 

early death due to asthma and bronchitis. These afflictions were related to 

high levels of sulfur in the body (Environmental Protection Agency). Also,  
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breathing high concentrations of sulfur have been linked to a decline in IQ, 

hearing loss, cancer, and cardiovascular disease. (Environmental Protection 

Agency).  

Acid rain has its own environmental and human effects. Acid rain 

causes bodies of water to become more acidic than they normally would be. 

This results in a lower hydrogen concentration (pH) than aquatic animals and 

plants can survive. Visibility can also be decreased by the acid rain still in the 

air that has not yet condensed and fallen. Acid rain will increase the rate that 

certain materials and paint decay. (Environmental Protection Agency).  

 As seen above, sulfur emissions also cause haze (Harvi Velasquez). 

Haze occurs when sunlight tries to shine through tiny particles in the air. 

These tiny particles are pollutants in the air. Clarity of the air is reduced 

when there are more pollutants in the air. (Environmental Protection 

Agency). Haze causes the same health problems in people as acid rain 

causes. In the eastern United States, the normal visibility is between 15 – 30 

miles. If there were no air pollution, this range would be 45 – 90 miles. This 

change would increase visibility by 200%. Removing more sulfur from fuel 

will results in less sulfur emissions thus reducing the harm to human health 

and the environment (Environmental Protection Agency). 

 Sulfur emissions have been on the decline since 1998 (Environmental 

Protection Agency). As of December 1, 2010 the amount of sulfur allowed in 

diesel fuel is 15 ppm for transportation vehicles, this value may vary in some 

states (Shell). In gasoline, the current regulation is 30 ppm. Although, many 
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air quality agencies are urging the EPA to reduce this concentration to 10 

ppm. If the concentration of sulfur is reduced to this level, air pollution would 

decrease “as if 33 million cars and light trucks were no longer used” 

(Environment News Service). Regulations continue to get stricter to lessen 

the harm on human health and the environment. Also, sulfur content must 

be decreased to meet regulations for new technology. For example, fuel cells 

require sulfur level below 0.1 ppm, so sulfur will have to be reduced more to 

meet this standard, and to use fuel cell technology in vehicles (Sun). 

 Sulfur is also present in biomass feed stocks. This means that even if a 

switch is made to a renewable source of energy the sulfur will still need to be 

removed in order to meet environmental standards. The level of sulfur in 

biomass, before any processing, ranges from 50 – 230 ppm by volume.  

Along with all the sulfur issues mentioned above, sulfur causes pipeline 

corrosions, thus reducing the life of a process plant. This can cause 

expensive pipeline removal and replacement. Also, the sulfur molecules 

poison the catalysts that are used in a reactor for sulfur removal. For this 

reason, a catalyst must be used that can still work under these conditions. 

One way to remove sulfur is hydrotreating, specifically hydrodesulfurization 

(Cheah, Carpenter and Magrini - Bair). 

1.3 Hydrotreating 

The sulfur in fuel can be removed by the use of an effective catalyst. A 

catalyst is used to begin a reaction or to increase the rate of an already 

occurring reaction (Bartholomew). One of the main goals of catalysis is to 
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form a catalyst that can form desired products instead of undesired products 

(Rioux, Song and Hoefelmeyer). The elimination of undesired products in a 

reaction is a very difficult process and requires extensive research. There are 

some catalysts that will work to remove sulfur from a process and some 

catalysts that will not work, despite being utilized for the same reasons in the 

same process (Bartholomew). The design of a catalyst usually includes 

“utilizing nanoscience to fabricate active catalyst sites, which are deposited 

on a support to produce a model heterogeneous catalyst” (Rioux, Song and 

Hoefelmeyer).  

One way to remove sulfur is by hydrotreating. “Hydrotreating is the 

catalytic conversion and removal of organic sulfur, nitrogen, oxygen, and 

metals from petroleum crudes at high hydrogen pressures accompanied by 

hydrogenation of unsaturates and minor cracking of high molecular [weight] 

hydrocarbons” (Bartholomew). There are four different types of 

hydrotreating: hydrodesulfurization (HDS), hydrodenitrogenation (HDN), 

hydrodeoxygentation (HDO), and hydrometallization. The removal of sulfur is 

achieved by hydrodesulfurization (HDS). The reaction that is desired is seen 

below. This reaction states that the sulfur is removed from compound A and 

makes hydrogen sulfide, thus leaving compound “A” free of sulfur 

(Bartholomew).  

 

Equation 1 
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1.4 Hydrodesulfurization (HDS) 

HDS is a very important aspect of fuel refinery because sulfur is the 

most abundant heteroatom in fuel (Cattenot, Peeters and Geantet). The 

removal of sulfur is performed by HDS. The removal of sulfur will reduce the 

emissions and the harmful effects those emissions have. HDS can be 

performed in two ways, direct desulfurization (DDS) or hydrogenation (HYD).  

In DDS, the “C – S bonds of the reactant molecule are broken by 

hydrogenolysis, leading to the formation of 3, 3’ – dimethyl – biphenyl” 

(Rothlisberger). In the case of HYD, “the reactant molecule is first 

hydrogenated to intermediates, the C – S bonds of which are then broken to 

form 3, 3’ dimethyl – cyclohexylbenzene and 3, 3’ – dimethyl – bicyclohexyl” 

(Rothlisberger). A specific scheme of the pathways that HDS can take is seen 

below, in Figure 1. The molecule, 4, 6 – dimethyl – dibenzothiophene is of 

particular interest because the two methyl groups prevent sulfur from being 

on the surface, thus making the sulfur molecule harder to remove. 
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Figure 1. Pathways Of Hydrodesulfurization. Reprinted With 
Permission From Elsevier (Lewandowski, Da Costa and Benichou).  

 

Figure 1 shows the two pathways that 4,6 – dimethyl – 

dibenzothiophene can take during HDS. When this molecule takes the 

hydrogenation route, the products formed are methylcarbonylhydrothiophene 

(MCHT) and 3,3’ dimethylbenzoalkane (DMBCH). When the molecule takes 

the DDS route, the product formed is only 3,3’ dimethylbenzophenol 
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(DMBPh). Depending on the products desired, a pathway will be chosen for 

HDS based on the type of catalyst that is used (Lewandowski, Da Costa and 

Benichou).  

1.5 Why A New Catalyst Is Needed 

Currently, there are a couple of different catalysts that are used for 

HDS, cobalt molybdenum (CoMo) supported on gamma – aluminum oxide (ϒ 

– Al2O3), nickel molybdenum (NiMo) supported on ϒ – Al2O3, and finally nickel 

tungsten (NiW) supported on ϒ – Al2O3. These catalysts are used “due to their 

high dispersion and high activity per unit volume, relatively low cost, 

tolerance to sulfur poisons, and high specific activities for removing oxygen - 

, nitrogen - , and sulfur – containing functional groups and/or heteroatoms” 

(Kuo and Tatarchuk). There has been little need to develop a new catalyst, 

but recently the need to process heavier crude oil is triggering a need for a 

better catalyst (Kuo and Tatarchuk). Also, in order to achieve the level of 

HDS needed for the ultra – low levels of sulfur, a new catalyst is needed for 

this new level of requirements (Pessayre, Geantet and Bacaud).  

To reduce the sulfur level from 500 ppm to 50 ppm, a catalyst is 

needed that is four times more active than present catalysts (Knudsen, 

Cooper and Topsoe). To reduce the sulfur content further, an even more 

active catalyst will be needed (Rothlisberger). The conventional catalysts, 

such as CoMo, are usually used in the first stage of hydrotreating. After this 

initial hydrotreating, there are mainly dibenzothiophene derivatives seen in 

the feed. These derivatives do not respond to the normal catalysts used 
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because of the steric hindrances from the derivatives alkyl groups. Also, the 

hydrodenitrogenation must occur before the deep HDS can occur. When the 

nitrogen values are above 60 ppm it obstructs the deep HDS process 

(Lewandowski, Da Costa and Benichou).  

 The types of metals that have gained attention for use in this process 

come from the second and third rows of the periodic table. These metals 

include platinum, iridium, palladium, rhodium, and ruthenium. Noble metal 

sulfides have shown promising activity for the second step of HDS, deep HDS 

(Vit, Cinibulk and Gulkova).  

1.6 Platinum As A Sulfur Tolerant Catalyst 

Noble metal catalysts, such as platinum, are good options for catalysts 

to remove sulfur from fuel (Vit, Cinibulk and Gulkova). For example, fluid 

catalytic cracking (FCC) gasoline makes up 30 – 40% of the total gasoline 

produced. A sulfur tolerant catalyst is needed because the main components 

of FCC gasoline consist of thiols, sulfides, thiophene, and other sulfur 

compounds, around 85 – 95% (Brunet, Mey and Perot). Noble metal 

catalysts, such as Pt, “have a better hydrogenation performance than 

conventional metal sulfides in HDS, and may be used in the second reactor of 

a deep HDS process” (Sun). Platinum and palladium are less prone to be 

inactive in sulfur than other metals tested for deep HDS (Rothlisberger).  

Platinum is a better catalyst to use, even though palladium is a 

cheaper material. In a study done by Niquille – Rothlisberger and Prins, Pt  
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was seen as a better desulfurization catalyst than Pd. Therefore, the Pt 

catalyst should be used as a sulfur removal tool (Niquille - Rothlisberger and 

Prins).  

A proposed idea, mentioned in section 1.4, is to use a noble metal 

catalyst in the second reactor during two – stage deep HDS. Pt works best if 

the amount of sulfur entering the second reactor is low enough to keep good 

activity of the catalyst. If the sulfur level is too high, the activity of the 

catalyst will be lower and not worth the cost (Guo, Sun and Prins). The 

“strong metal sulfur chemisorption” of the catalyst causes the sulfur to 

poison the catalyst when in high concentration (Miller and Koningsberger).  

As the catalyst is used the surface becomes saturated with sulfur 

atoms, this results the catalyst unusable due to catalyst deactivation (Miller 

and Koningsberger). At this time the catalyst will need to be regenerated. 

Catalyst deactivation means that there is a “decrease in catalytic activity 

and/or selectivity with time on stream” (Bartholomew).  

There are a variety of different types of deactivation mechanisms that 

can occur. These deactivation mechanisms include coking, poisoning, 

sintering, contamination of catalyst, or physical catalyst changes. Coking of a 

catalyst occurs when there is adsorption of hydrocarbons onto the catalyst 

surface and solid carbon forms. Coking is usually a reversible process. In the 

case of coking, the catalyst can be regenerated by burning the hydrocarbons 

off of the catalyst surface. Sintering of a catalyst usually occurs at high 

temperatures. Sintering occurs when there is a “loss of catalytic surface area 
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due to crystallite growth in the catalytic phase [or] loss of support area due 

to support collapse and of catalytic surface area due to pore collapse on 

metal crystallites” (Bartholomew). When a catalyst is sintered it cannot be 

reversed. When the catalyst is physically changed, it is also irreversible. 

Contamination of a catalyst can also be reversible in certain cases. 

When a catalyst becomes saturated with sulfur, as described above, 

the catalyst is poisoned. Poisoning of a catalyst occurs when a “strong 

chemisorption of reactants, products, or impurities on sites otherwise 

available for catalysis” (Bartholomew). Common poisons include oxygen, 

sulfur, phosphorous, mercury, tin, zinc, and carbon monoxide. The type of 

poison is usually indicative of the reaction being performed; sulfur poisoning 

is usually seen in hydrogenation, dehydrogenation, hydrocracking, oxidation 

of carbon monoxide and hydrocarbons, steam reforming of methane, 

naphtha, and CO hydrogenation of the syngas. Minimization of sulfur 

poisoning can be achieved by removal of impurities, changing the reaction 

conditions, and/or by adding substances that adsorb the poison.  

Depending on the type sulfur poisoning that occurs, it may be an 

irreversible or reversible process. In the reversible case, the catalyst can be 

regenerated. Regeneration of a catalyst is performed to return the catalyst 

back to its original state. Regeneration of a sulfur poisoned catalyst is 

particularly difficult. One way to regenerate a sulfur poisoned catalyst is to 

run steam over the catalyst at 700oC. In these conditions, 80% of sulfur was  
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removed from catalysts such as, “Mg – and Ca – promoted Ni steam 

reforming catalysts” (Bartholomew). For Pt catalysts, this is not considered 

an effective way to remove the sulfur.  

Another way is to remove the sulfur is at very low oxygen partial 

pressures. This is a very slow process, but under these conditions 

regeneration is possible. After regeneration the Pt catalyst can be continued 

to be used. The regeneration process costs less than disposing of the old 

catalyst and purchasing a new catalyst (Bartholomew). Regeneration of the 

catalyst is a way of life when sulfur is used in the process. Two of the most 

important things for a sulfur removal process are a sulfur tolerant catalyst, 

and a way to regenerate the catalyst once it becomes poisoned 

(Bartholomew).  

A study done by Lewandowski and et al. performs experiment on the 

HDS activity with tungsten carbide and tungsten trioxide both with platinum. 

For this experiment, the degree of HDS (%) was measured by Equation 2. 

 

 

Equation 2 

 

Ss is the total products (molar percent) formed when the reaction with 

dimethyldibenzothiopene occurs. 4,6DMDT is the dimethyldibenzothiophene 

left after the reaction occurs (molar percent) and SH is the amount (molar 
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percent) of the products that are not sulfur related. This equation will give 

the degree of HDS performed. The degree of HDS was then plotted against 

the contact time and W2C – Pt was shown to have the highest degree of HDS 

activity for the same amount of contact time as W2C and Pt – W2C. This 

means that when the platinum is introduced after the synthesis of the W2C 

the degree of HDS is better. When platinum is entered into the catalyst, after 

the initial synthesis of tungsten carbide, the catalyst was more sulfur 

tolerant. Also, when the contact time was increased it was seen that the 

performance was better when platinum was present. Contact time should be 

larger when platinum is involved because the results using the catalyst will 

be better than having a lower contact time (Lewandowski, Da Costa and 

Benichou). 

Another study performed by W. R. A. M. Robinson et al. showed that 

at low sulfur concentrations noble metal catalysts worked the best. If the 

sulfur content of the fuel is high, a commercial catalyst will first need to be 

used to reduce the concentration of sulfur to a lower level because noble 

metal catalysts do not have a high sulfur resistance in high sulfur 

concentrations (Robinson, van Veen and de Beer).  

Finally, although there is the option to combine platinum with many 

other metals to produce better properties. A study done by Merino, et al. 

showed that a monometallic noble metal catalysts, such as Pt, has the 

strongest catalytic active sites for HDS and HYD reactions. They are more  
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active than those same noble metal catalysts combined with molybdenum 

sulfide because monometallic catalysts have stronger active sites in the 

presence of sulfur (Merino, Centeno and Giraldo). 

1.7 Catalyst Support Choice For Sulfur Removal 

When choosing a support it is important to look at the sulfur tolerance 

properties of the support, but also to look at the other compounds that will 

be present and make sure the catalyst will not lose activity due to these 

compounds (Matsui, Masaru and Makoto). The support used on a catalyst can 

also have an effect on the activity during sulfur removal or the adsorption of 

sulfur onto the catalytic surface. One of the types of supports that have been 

studied is zeolites. Zeolites contain silicon, aluminum, and oxygen and they 

have a tetrahedral framework. These supports are very porous, which makes 

them good for use in heterogeneous catalysis (British Zeolite Association). 

Zeolites also reduce cracking activity, which in turn produces higher amounts 

of naphthalene and gasoline products. Although zeolites show good results, 

they are very expensive to use in production.  

A study done by Fujikawa, et al. looked at an alternative of combining 

silica and alumina oxide and also alumina oxide by itself on platinum. The 

results of this study showed that the combined support was a better option 

than the alumina oxide support by itself (Fujikawa, Idei and Ebihara). 

A catalyst resistant to sulfur can be increased when the catalyst is 

supported on an acidic zeolite support. Acidic zeolites are even great 

supports in high concentrations of sulfur. Acidic supports increase the sulfur 



www.manaraa.com

 

16 

 

tolerance of a noble metal by electron transfer (Bihan and Yoshimura). An 

experiment was performed by Matsui, et al. and it was found that acidic USY 

zeolite was indeed a better support to use to increase sulfur tolerance than 

silica but this support was inhibited by the presence of nitrogen. This means 

that in an industrial setting that silica would be a better catalyst to use 

because although it is less sulfur tolerant than acidic zeolite it is not inhibited 

by the presence of nitrogen compounds, which is present in fuel (Matsui, 

Masaru and Makoto). 

1.8 Adsorption Of Sulfur On Platinum 

“Adsorption is the formation of chemical bonds between adsorbing 

species and an adsorbing surface driven by the propensity of adsorbent 

surface atoms to increase their coordination numbers” (Bartholomew). 

Adsorption occurs in two forms chemical, or chemisorptions, and physical, or 

physisorption. “Physisorption, is the relatively weak, nonselective 

condensation of gaseous molecules on a solid at relatively low temperatures; 

the attractive forces between adsorbate and adsorbent involve Van der Waals 

force, atomic distances typical of a Van der Waals layer, and heats of 

adsorption less than about 15 – 20 kJ/mol. Chemisorption, by contrast, is 

relatively strong, selective adsorption of chemically reactive gases on 

available sites of metal or metal oxide surfaces at relatively higher 

temperatures (i.e. 25 – 400oC); the adsorbate – adsorbent interaction 

involves formation of chemical bonds and heats of chemisorption on the 

order of 50 – 300 kJ/mol” (Bartholomew). 
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The adsorption of sulfur on platinum usually occurs on the (111) plane. 

This plane is the most stable and usually is the most prevalent in small 

particles (Michaelides and Hu). The (111) plane is a lattice position; a lattice 

position is the “standard notation for a point in a crystallographic lattice”. 

Other examples of lattice positions include, (110), (101), (001), etc. 

(Shackelford). 

Chemisorption energy on Pt can be calculated by the following 

equation. 

 

Equation 3 

 

EA is the total energy of the adsorbate, EPt is Pt surface, and EA/Pt is the 

chemisorption system. Hydrogen adsorbs on Pt by binding to different sites, 

such as top, bridge,  and face – centered – cubic (fcc). When sulfur adsorbs 

onto the Pt surface it adsorbs at the “fcc threefold hollow sites with an 

equilibrium S – Pt bond length of” 22.4 – 22.8 nm (Michaelides and Hu). The 

chemisorption energy was the highest at the fcc position and the lowest at 

the top position. The conclusion is that the fcc site is the most stable for the 

sulfur to chemisorbed onto the platinum. The following picture shows how 

hydrogen sulfide binds to Pt on three – fold, bridge, and top sites.  
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Figure 2. The Adsorption Of H2S On Pt At Three – fold, Bridge, And 
Top Sites.  Re – printed With Permission From American Institute Of 

Physics (Michaelides and Hu).  

It was found that the top site on platinum has the highest bonding 

energy with hydrogen sulfide. Since sulfur adsorbs to the platinum (111) 

plane the most, and thus the most prevalent plane available for reaction, too 

much sulfur can result in an unusable catalyst (Michaelides and Hu).  

1.9 Control The Size Of Pt Catalyst Using Polyvinylpyrrolidone 

(PVP) 

To achieve the best results during HDS, the best catalyst must be 

used, including the size of the catalyst. The size dependence of sulfur 

tolerance on platinum catalysts is not a resolved issue and views on both 

sides of the spectrum have been presented. The Pt catalyst size can be 

changed by varying the amount of polyvinylpyrrolidone (PVP) and varying 

the amount of reductant (such as methanol) can achieve different sized Pt 
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catalysts. In a study done by Teranishi, catalysts from 19 – 50 Angstroms, 

1.9 – 5.0 nm, were synthesized by the method described above. Teranishi 

found that “the particle size can be significantly controlled by the kind of 

alcohol and the amount of PVP at the high concentration of alcohol” 

(Teranishi, Hosoe and Tanaka). They also found that the size can be 

controlled by the amount of PVP in regards to Pt precursor in the solution.  

 Teranishi also describes stepwise growth. Stepwise growth is using an 

initial nanoparticle base, usually small in size, and growing the nanoparticles 

bigger by using the initial particles as a nucleus for each of the larger 

particles. Using the stepwise growth method with an alcohol that has a 

higher boiling point will result in nanoparticles that have a smaller 

distribution. This means that the nanoparticles will be true to size when 

tested and not a variety of largely distributed sizes. “Accurate control of the 

particle size is most important [when investigating] those novel physical and 

chemical properties” (Teranishi, Hosoe and Tanaka). If the catalyst size 

cannot be controlled, replication of experiments would be difficult. Therefore, 

PVP is used to keep this control for each experiment (Teranishi, Hosoe and 

Tanaka).  

1.10 Best Pt Size For Sulfur Removal 

It is a known fact that noble metals are active catalysts in the 

presence of sulfur, but the size dependence of this activity is unknown (Wang 

and Iglesia). There are different views on which size of platinum catalyst will 

be the most active in the presence of sulfur. It is important to vary the size 
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of particles during catalytic testing to achieve the optimum catalyst for the 

process. Either the smaller particles will be more active or the larger particles 

will be more active. Reinhoudt, et al. performed a study on platinum 

catalysts supported on amorphous silica alumina (ASA) from sizes of 1.2 – 4 

nm and their activity was tested in the presence of sulfur. They found that 

the smaller particles were more active during the conversion of 4-ethyl, 6-

methyldibenzothiophene (4-E,6MDBT) because the reaction still proceeds 

over sulfur vacancies that only the small platinum particles have (Reinhoudt, 

Troost and van Schalkwijk). 

Another study was performed that had similar findings. The particle 

sizes that were studied ranged from 2 to 5 nm. The particles were then 

tested in the presence of sulfur and it was concluded that the smaller 

particles were more active in the presence of sulfur. They went on to explain 

that in the smaller particles “the residual noble metal phases coexist with the 

noble metal sulfur phases at the surface of the small Pt … particles” (Matsui, 

Masaru and Ichihashi). As the size increased it was seen that metal sulfur 

phases were only seen at the surface of the metal catalyst and no noble 

metal phases existed (Matsui, Masaru and Ichihashi). There is also the other 

view that believes the larger particles are more active in sulfur. In the case 

of ruthenium, another noble metal, a study was performed to observe the 

sulfur tolerance of different sizes of the metal catalysts. As a catalyst gets 

under the size of 10 nm, the coordination of the metal decreases with 

decreasing particle size and as coordination decreases intermediates of a 

reaction tend to bind more strongly to the particle. To see if this is true in the 
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presence of sulfur, Ru catalysts were supported on silica and the size ranged 

from 1.2 – 6.2 nm. These catalysts were studied for their sulfur tolerance by 

flowing thiophene over the catalysts and ranging the amount of H2S from 0 – 

10 kPa. Wang and Iglesia concluded that the turnover rates increased as the 

particle size increased, which is consistent with the fact that the sulfur would 

bind more strongly to particles that had lower coordination. Also, there are 

less sulfur vacancies seen on the smaller particles, which would allow for less 

activity in the presence of sulfur. Finally, smaller particles exhibit higher 

steady – state sulfur coverage” when exposed to sulfur (Wang and Iglesia). 

Once this issue is resolved, the best size that is found can be applied 

to the formation of a bimetallic catalyst. It has been seen that the addition of 

palladium or rhodium can enhance the sulfur resistance of a platinum 

catalyst on aluminum oxide, this also a conflicting topic as seen in section 

1.5. Further research can be done to make use of the most active size of 

platinum catalyst and apply it to a truly sulfur tolerant catalyst (Qian, Yoda 

and Hirai).
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Chapter 2: Procedure 

2.1 Pt Particle (2 nm) Synthesis  

The smallest Pt nanoparticles were synthesized using a reflux setup 

with a round bottom flask in an oil bath. Sodium hydroxide (NaOH), 250 mg, 

(Sigma Aldrich reagent grade) was dissolved, by sonication: VWR B35ODA – 

DTH, in 12.5 mL of ethylene glycol (Sigma Aldrich reagent grade). This 

solution was combined with a solution of 12.5 mL of ethylene glycol and 0.25 

g of chloroplatinic acid hexahydrate (H2PtCl6 * 6H2O ), Sigma Aldrich 50% Pt 

basis. The resulting solution was added to a three-necked round bottom 

flask. The left and right necks were topped with septa and the middle neck 

was used in the reflux setup. The left neck contained an argon bubbling 

needle which was used to remove the dissolved oxygen in the solution while 

refluxing. The solution was heated at 155oC for three hours.  

After this time, the solution was cooled and then neutralized with a 

volume of 1 mL of 2M hydrochloric acid (HCl). Immediately after this, 12.2 

mg of polyvinylpyrrolidone (PVP, Sigma Aldrich molecular weight 40,000 

g/mol), dispersed in ethanol, was added to retain the size of the particles. 

The resulting amount of particle solution was 25 mL.
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To wash these particles, 1 mL of particle solution was added to 9 mL of 

acetone, reagent grade from Sigma – Aldrich, and centrifuged, Clinical 100 

VWR, for 20 minutes at 5000 rpm. This resulted in a black precipitate at the 

bottom of the vial. A pipette was used to remove the supernatant. To the 

black precipitate, 3 mL of ethanol was added. To the resulting ethanol/ 

particle solution, 9 ml of a mixture of hexane isomers, Sigma Aldrich, was 

added and centrifuged for 10 minutes at 3000 rpm. After centrifuging, the 

supernatant was removed and 3 mL of ethanol was added. This is repeated 

two more times (Kuhn, Huang and Chia - Kuang). The solution is now ready 

to be prepared for characterization and reaction experiments.  

  

Figure 3. Scheme Of 2 nm Synthesis
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2.2 Pt Particle (3.4, 4.3, And 6.8 nm) Syntheses 

The three larger sizes of platinum nanoparticles were prepared in a 

reflux setup with a round bottom flask. Seeded growth was used to produce 

the 4.3 and 6.8 nm particles, with the 3.4 nm particles used as the seed. To 

make 3.4 nm particles, 62.9 mg H2PtCl6 was dissolved in 20 mL of distilled 

water. Next, 180 mL of methanol was then added to a round bottom flask. 

The water-H2PtCl6 solution was added to the methanol. Before starting the 

reflux, 133 mg of PVP (molecular weight 40,000 g/mol) was added to the 

mixture. A reflux set up with an oil bath was then set up. Parafilm was put 

around the connection between the condenser and the round bottom flask. 

The mixture was refluxed for three hours at 110oC. During this time, the 

mixture turned a dark brown color.  

Once the 3 hours were completed, the mixture was transferred to a 

beaker for the evaporation of methanol. The hot plate was set to 55oC until 

the methanol was evaporated and only solid black platinum particles 

remained. These particles were re – dispersed in a minimum amount of 

ethanol. Once in ethanol, the particles were washed. The washing procedure 

follows the one for the smallest particles; except these particles do not need 

the initial acetone wash. This mixture was centrifuge for 10 minutes at 3000 

rpm. After each separation, the particles were re-dispersed in ethanol, even 

after the last wash (Kuhn, Huang and Chia - Kuang). The particles are then 

prepared for TEM and XRD characterization. These 3.4 nm particles were 

used as a seed for the growth of the 4.3 nm (Kuhn, Huang and Chia - Kuang) 

and the 4.3 nm particles were used to seed the growth for the 6.8 nm 
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particles. To use these particles as a seed refers to adding more material and 

refluxing longer after the initial particles were synthesized. The difference 

between the syntheses was the amount of time the solution was refluxed and 

the concentration of PVP in the solution. A lower concentration of PVP allows 

for smaller particles. Also, when the precursor is added for the 4.3 and 6.8 

nm particles, 10 mL of de – ionized water was used to dissolve the precursor 

(Kuhn, Huang and Chia - Kuang). Table 1 shows these differences. Figure 4 

shows a scheme of the syntheses for the 3.4, 4.3, and 6.8 nm particles. 

 

Figure 4. Scheme Of 3.4, 4.3, And 6.8 nm Syntheses 
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Table 1. Varying Precursor And Methanol Used 

Particle Size (nm) Methanol Added 

(mL) 

Precursor Added 

(mg) 

Total Time 

(hrs) 

3.4 180 62.9 3 

4.3 90 36.9 6 

6.8 90 31.1 9 

 

2.3 Immobilization On Silica 

With the washed solution, the platinum particles were used to make 

one mass percent Pt on silica. The necessary amount of silica (CAB – O Silica 

® M – 5 150 grade; surface area: 200 m2/g) can be seen in Table 2. The 

large amount of silica used for the 2 nm particles is due to the increased 

amount of precursor used in the synthesis compared to the syntheses of the 

other particle sizes. Additional ethanol was added to these tubes to facilitate 

the mixing of the silica into the solution. The tubes were then sonicated for 

two hours in a 5.7 L VWR Ultrasonics Cleaner, model B3500A – DTH; 120 V; 

60 Hz. The tubes were then centrifuged for 15 minutes at 5000 rpm. After 

centrifuging, the supernatant was removed leaving the supported particles 

behind. This solution was then dried in a LABCONCO Protector Laboratory 

Hood overnight. The next day the partially dried material was put into a VWR 

oven kept at 60oC for another night (Kuhn, Huang and Chia - Kuang). The 

completely dried supported particles were ground into a fine powder using a 
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mortar and pestle. In addition to the samples seen above, an unwashed 2 

nm Pt particle sample was supported on silica by following the procedure 

above. An unwashed sample means that is does not follow the washing 

procedure described in section 2.1 or 2.2, depending on the size of the 

particles. 

 

Table 2. The Amount Of Silica Added To The Particle Solution 

Catalyst Size (nm) Amount of Silica added (mg) 

2.0 24,750 

3.4 2,300 

4.3 3,705 

6.8 4,919 

 

Two mass percent Pt/silica was also made using the same procedure 

for the 3.4 nm particles only, one washed sample and one unwashed sample 

was made. For the washed sample, 1150 mg of silica, and for the unwashed, 

574 mg of silica was used make two mass percent Pt/silica. The difference in 

the amount of silica used is due to the difference in amount of Pt particle 

solution used. The same procedure was used as to support the solution for 

two mass percent Pt/silica (Kuhn, Huang and Chia - Kuang).  
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2.4 Characterization 

2.4.1 Transmission Electron Microscopy (TEM) 

“The transmission electron microscope is in many ways analogous to a 

transmission optical microscope” (Brandon). Although there are a couple of 

differences, one being that the electron beam source is at the top and the 

recording system of the microscope is at the bottom. The other difference is 

that a transmission electron microscope the source is an electron beam. 

While in an optical microscope the source is light. The electron beam source 

is usually one of three types, heated tungsten filament, lanthanum 

hexaboride, and cerium hexaboride. Cerium hexaboride is the most recent 

addition to the types of electron beam sources. A transmission electron 

microscope can see samples as small as 0.1 nanometers.   

This microscope is operated by “changing the lens [electron beam] 

current in order to adjust the focus length of the electromagnetic lens in 

order to focus a first image from the elastic scattered electrons that have 

been transmitted through the thin film specimen” (Brandon). “[T]he final 

image is [then] observed on a fluorescent screen that converts the high 

energy electron image into an image that is visible to the eye” (Brandon). On 

the screen, generally, the electron density is around 10-10 or 10-11 

amperes/m2. Some materials are damaged by the electron beam and this 

could cause the electron density to be lower in these types of samples. The 

microscope must also be kept under vacuum at all times because the  
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electron beam has a “limited path length in air” (Brandon). This vacuum 

needs to be at 10-7 torr for the highest resolution to be seen through the 

microscope (Brandon). 

The atomic spacing and particle sizes were obtained using TEM. A 

small drop of well dispersed particles in ethanol was placed on 200 square 

mesh copper TEM grids with a formvar carbon film. The TEM grid was then 

used in FEI Tecnai TEM machine with an accelerating voltage of 200 kV, with 

the operation of the machine by Dr. Yusuf Emirov at the Nanotechnology 

Research and Education Center (NREC). The scale bars on the images 

obtained from TEM were 2 nm, 10 nm, and 20 nm for each size of the 

particles, at a magnification ranging from 750,000 times to 1 million times. 

2.4.2 X – Ray Diffraction (XRD) – General And Alignment 

An X – Ray diffractometer has three different parts, an X – ray source, 

X – Ray generator, and the diffractometer. The diffractometer portion of the 

X – ray diffractometer “controls the alignment of the beam, as well as 

position and orientation of both the specimen and the X – Ray detector” 

(Brandon). “The X - Rays are generated by accelerating a beam of electrons 

onto a pure metal target” (Brandon). These electrons then expel the ground 

– state electrons from the sample and then the X – Rays are discharged 

while re – filling the ground state electrons. The wavelength of the X – Rays 

produced is found by finding the frequency and dividing it by velocity of light 

(3.8 *108 m/s). The X – ray wavelength produced is characteristic of the X – 

ray source being used.  
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 The spectrum is generated by using a goniometer stage. This allows 

the sample to be moved over a variety of axes. Before the goniometer is 

used, alignment of the axes must be performed. Divergence slits are used in 

the diffractometer to allow for determination of the “area illuminated by the 

incident beam” (Brandon). The amount of area illuminated may need to be 

increased for known samples that the X – Ray spectrums seen are not in line 

with literature. X – Ray diffraction is a useful tool to see what is in the 

sample if you have a unknown mixture of materials that needs to be 

determined. 

 Confirmation of a platinum sample and the lattice plane can be 

obtained using XRD. A glass microscope slide was obtained and concentrated 

particles, for each size, in ethanol were dispersed in a large circle on the 

slide. This slide was dried over several days for use in the Philips X – Ray 

Diffractometer, in the NREC. The data was collected and aligned using Xpert 

Data Collector. Before beginning the experiment, the machine must be 

aligned according to the sample in the 2 – theta, Ω, and z directions. The 

fixed divergent slit and programmable receiving slit (PRS) were installed into 

the machine. These two pieces are used in general XRD experiments. For the 

aligning, on the incident beam side, a 0.1 copper attenuator,  degree 

divergence slit, 0.04 radius soller slit was added. On the diffracted beam 

side, anti – scatter slit, nickel filter, and the PRS was set to 0.1 mm. A 

mask was also added to the incident beam optics but this size changes while  
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aligning, while the rest of the pieces in the machine will stay the same when 

aligning each sample. Finally, the power of the machine was turned up to 

45,000 V and the current was turned up to 0.04 A.  

 To align 2 – theta, a manual scan is performed through 2 – theta with 

the following settings, range – 0.99 degrees, scan mode – continuous, 

time/step – 0.5 sec, step size – 0.01 degrees, and deg/sec – 0.02 deg/sec. 

Once the scan finished, a green line appeared, an alignment tool, and this 

line was moved to the peak maximum. Once the peak maximum is set this is 

the new alignment for 2 – theta for the duration of the experiment.  

 To align z, a manual scan through the z – axis was performed with the 

following settings, range – 1.99 mm, scan mode – continuous, time/step – 

0.5 sec, and step size – 0.01 mm. Once the scan is finished, the green line 

was moved to half of the intensity seen during the scan.  

 To align omega, a manual scan through omega was performed with 

the following settings, range – 0.99, scan mode – continuous, time/step – 

0.5 sec, step size – 0.01 degrees, deg/sec – 0.02 deg/sec. The green line 

was then moved to the maximum of the peak. Once the first omega 

alignment is complete, the z and omega must be done again to ensure 

proper alignment. For some samples, the z and omega will need to be 

aligned more than twice. 
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Table 3. Mask Size And Alignment Settings For The 6.8 nm XRD 
Sample 

Sample 

Size (nm) 

Mask  

Size  (mm) 
Alignment Settings 

  

2θ (degrees) Z (mm) Ω  (degrees) 

6.8 20 -0.130 9.547 0.5958 

 

2.4.3 XRD Experiments 

For the actual experiment, ½ degree divergence slit, ½ anti – scatter 

slit, and the PRS was set to 0.3. The copper attenuator is removed once the 

experiment begins. A scan was performed in continuous mode and each 

setting change with particle size, time per step, step size, and the length of 

the experiment.  

 

Table 4. The XRD Experiment Settings For Each Sample 

Particle Size Time/Step Step Size 
Length 

of Experiment 

6.8 nm 7.5 0.18 1 hr 9 mins 

 

2.4.4 Temperature – Programmed Experiments 

Four temperature – programmed experiments were performed. Each 

sample for these experiments was 50 mg of supported, 2% Pt in silica, 3.4 

nm particles. Two additional experiments were performed with 50 mg of 1% 
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Pt in silica, 2.0 nm particles. These experiments were performed with a mass 

spectrometer. Mass spectrometry “provides the molecular weight and 

valuable information about the molecular formula, using a very small 

sample” (L.G. Wade). In the mass spectrometer, the sample’s molecules are 

broken apart or fragmented.  

There are two different forms of mass spectrometry electron impact 

ionization and magnetic deflection. Electron impact ionization means that the 

sample is struck with an electron beam and the “positively charged 

fragments are detected by the mass spectrometer” (L.G. Wade). Magnetic 

deflection separates the ions by attracting the positive ions “to a negatively 

charged accelerator plate, which has a narrow slit to allow some of the ions 

to pass through” (L.G. Wade). In this case, the magnetic field can be 

changed so all the possible fragment masses can be seen. A graph is then 

produced with the m/z values on the x – axis and the abundance of each m/z 

value on the y –axis; m/z value means the mass of the ion over the ion’s 

charge (L.G. Wade).  

Magnetic deflection mass spectrometry was used for these 

experiments. Each catalyst was put into a U – tube reactor and insulation 

was added to simulate a packed bed reactor. Quartz wool was used as 

insulation in the U-tube reactor and around the reactor and a Thermo 

Scientific Thermolyne furnace was used to heat the sample in the reactor. 

Before each experiment, a pretreatment was performed by running helium 

gas at 50 standard cubic centimeters per minute (sccm) over the sample. To 
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allow for analysis the valve was also opened to the mass spectrometer. To 

flow the gases over the catalyst the valves above the reactor were opened. 

The filament status on the computer was then changed to the “on” position. 

The gauge pressure was then checked to be sure it was less than 1 atm. The 

temperature was taken up to 110oC Celsius from 22oC at 10oC per minute 

and then held at 110oC for one hour.  

For the first experiment, 2% Pt in silica 3.4 nm washed sample and 5 

sccm of oxygen gas was flowed over the sample after the valve was opened, 

and 45 sccm of helium gas were flowed over the sample. The temperature 

was taken from 42oC to 600oC at 10oC per minute. Once the temperature 

reached 600oC, the temperature was held for hour. For the experiment, the 

gases flow over the catalyst, react with the catalyst, and then enter the mass 

spectrometry equipment, Cirrus MKS mass spectrometer. The abundance of 

the fragments seen by the mass spectrometer is then recorded on the 

computer. This same experiment was also performed for an unwashed 3.4 

nm sample of 2% Pt in silica. Two additional experiments were performed on 

2 nm 1% Pt in silica. This is a temperature programmed oxidation (TPO) 

experiment. 

For the fifth experiment, the same pre-treatment procedure was 

followed, the hydrogen gas valves were opened and then the gas was turned 

on to 5 sccm, and 45 sccm of helium gas was flowed over the sample while 

the temperature was taken from 45oC to 600oC at 10oC per minute. Once the  
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temperature reached 600oC the temperature was held for one hour. The m/z 

values being looked at were the same as in the 10% oxygen in helium 

experiment. This is temperature programmed reduction (TPR). 

For the sixth experiment, the same pre-treatment procedure was also 

followed, 50 sccm of helium gas was flowed over the sample while the 

temperature was increased from 50oC to 600oC at a rate of 10oC per minute. 

The temperature was held at 600oC for one hour. The time for the 

temperature to reach 600oC in each experiment was around one hour making 

the total experiment time about two hours in length. The m/z values being 

looked at were the same as in the previous two experiments. This is a 

baseline experiment. 

2.5 Catalytic Experiments 

The catalytic experiments were performed using gas chromatography 

for the sulfur experiments and for the non – sulfur experiments mass 

spectrometry was utilized. Two different machines were used to avoid sulfur 

poisoning of the non – sulfur experiments, as sulfur can build up in the pipes 

of the machine that is using sulfur.  A gas chromatograph, Perkin – Elmer 

Autosystem I, is used by inserting a small amount of the sample, 1 

microgram, into an injector. As the sample goes through the gas 

chromatography column the components are separated and leave the column 

at different times. As the components leave the column they can then enter 

the thermal conductivity detector (TCD) to be analyzed separately (L.G. 

Wade).  
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2.5.1 Ethylene Hydrogenation Without Sulfur 

The amount of catalyst used in each U – tube reactor with the 

respective particle size can be seen in the Table 5 below. The mass 

spectrometer used for these experiments was the same mass spectrometer 

as the one used for the temperature programmed experiments above, Cirrus 

MKS Mass Spectrometer. Before starting the experiment, the catalyst was 

purged for 30 minutes with 50 sccm of helium. During the experiment and 

bypass, helium was set to flow at 51.2 sccm, hydrogen was set to flow at 25 

sccm, and ethylene was set at 1.3 sccm. This totaled in 77.5 sccm of gas 

flow. The valves on each gas must be turned on before turning the gases on 

to prevent a buildup of pressure. These gases, at first, were not flowed over 

the catalyst. Instead a bypass was performed, at room temperature, to get a 

baseline for the experiment. Measurements were taken every five seconds.  

 

Table 5. Amount Of Catalyst Used Without Sulfur 

Catalyst Size (nm) Amount of Catalyst used (mg) 

2.0 1.7 

3.4 2.2 

4.3 4.2 

6.8 6.1 
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CH2CH2 + H2 CH3CH3
 

Figure 5. Reaction Without Sulfur 

 

 Once steady state is reached, the temperature on the furnace is set to 

40oC with a ramp rate of 1oC/min.  The gases are flown over the catalyst with 

the gas flowrate unchanging from the bypass portion of the experiment. The 

experiment is complete when the gases have reached steady state.  

2.5.2 Ethylene Hydrogenation With Sulfur 

To test the activity of the catalyst in the presence of sulfur, the 

catalyst was first pretreated with thiophene before beginning the experiment 

and after the purge. The purge lasted for 30 minutes while flowing 5 sccm of 

helium over the catalyst. Once the valve for the helium gas that bubbles the 

thiophene was turned on, the gas was set to 1 sccm. In addition, the helium 

gas not bubbling thiophene was set to 100 sccm, another helium gas was set 

to 50 sccm, and the hydrogen was set to 50 sccm. This amounted in a total 

gas flow of 201 sccm. The sulfidation pretreatment was performed at 150oC 

with a ramp rate of 10oC per minute and held at that temperature for thirty 

minutes.  The amount of catalyst used in each experiment can be seen below 

in Table 6, this resulted in a total of four experiments with sulfur. 
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CH2CH2 + H2 CH3CH3

S  

Figure 6. Ethylene Hydrogenation Reaction With Sulfur 

 

Table 6. Amount Of Catalyst Used With Sulfur 

Catalyst Size (nm) Amount Of Catalyst Used (mg) 

2.0 89.8 

3.4 35.6 

4.3 26.7 

6.8 37.9 

 

After the sulfidation procedure, the gas flow rates were set to the 

same flow rates as the non – sulfur experiments. The catalyst was first 

bypassed to get a baseline for the experiment. Once every 30 minutes, 

measurements were taken by a six – port valve and this valve has two 

positions, A and B. While the valve is in position B, the sample is flowing 

from the furnace and out through the vent. When a sample is ready to be 

taken, the valve is moved from position B to position A. When the valve is in 

position A, the sample gases flow from the reactor tube and fill the sample 

loop. Once 0.2 minutes have passed, the sample loop is sufficiently filled and 
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the valve is turned back to position B. Turning the valve back to position B 

pushes the sample contained in the sample loop into the gas chromatograph 

and the sample is then analyzed. Figure 7 shows this process in more detail. 

The sample is analyzed with the computer program Turbochrom Navigator. 

This bypass experiment was performed with each particle size. 
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Figure 7. Diagram Of GC Valve System 
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After the bypass was completed, the gases were then flown over the 

catalyst, by opening the valves above the furnace, to perform the reaction 

with the platinum catalyst of each size. This results in a total of four 

experiments. Each experiment was performed at 40oC with a ramp rate of 

1oC per minute. Measurements were taken about every 30 minutes until 

steady state was reached. This signified the end of the experiment. 
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Chapter 3: Results And Discussion 

 Chapter 3 will begin by explaining the results of the synthesis of the 

nanoparticles. This chapter will then end by describing and analyzing the 

results of the characterization, TEM and XRD, and the catalytic experiments. 

3.1 TEM 

3.1.1 Platinum Nanoparticle Results (2 nm) 

 

Figure 8. 2 nm Pt Particles TEM Images  A: 2 nm Scale Bar, B: 10 nm 
Scale Bar, C: 20 nm Scale Bar  

 

TEM experiments confirm the size of the particles seen in the 

microscope and the atomic spacing of the metal in the particles. The TEM 

images seen above in Figure 8 confirm the synthesis of spherical particles. 

With use of the program ImageJ, freeware from NIST, 100 particles were
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sized using the scale bar as the reference. In Figure 9, the confirmation of 

platinum particles can be seen by measuring the atomic spacing of the 

particles. The atomic spacing is 2.3 Angstroms, (111) plane of platinum, all 

atomic spacing values reported from this section on was confirmed by the 

Xpert Highscore Program Database in USF’s NREC.  

The Xpert Highscore Program Database reported the Pt atomic spacing 

as around 2.25 Angstroms. This measurement confirms the presence of 

platinum. The atomic spacing for each metal is characteristic to that metal 

and thus the presence of platinum can be confirmed. The spacing between 

ten peaks was measured and then divided by ten, to get an average, to 

obtain the atomic spacing. 

 

 

Figure 9. Atomic Spacing Of 2 nm Platinum Particles  
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The size distribution of the smallest particle size is seen in Figure 10a. 

The average size of the smallest particles is 2.0 nm with a standard deviation 

of 0.37 nm. The size distribution shows that the average size falls in the 

highest concentration of particles. One – third of the particles measured fall 

into the range of 1.89 – 2.15 nm. Particles measured fell in the range of 1.1 

– 3.2 nm.   

 

Figure 10. Size Distributions Of The Pt Particles - A: 2 nm, B: 3.4 nm 
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Figure 11. Size Distribution Of Pt Particles - A: 4.3 nm, B: 6.75 nm 

 

3.1.2 Platinum Nanoparticle Results (3.4 nm Washed) 

 

Figure 12. TEM Images Of 3.4 nm Pt Particles. A: 2 nm Scale Bar,     
B: 10 nm Scale Bar, C: 20 nm Scale Bar  
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Figure 12 shows the TEM images for the 3.4 nm Pt particle size. These 

images confirm the synthesis of spherical particles. Figure 10 – B shows the 

size distribution of the 3.4 nm particle size. The average size of the particles 

measured is 3.4 + 0.61 nm. About one – third of the particles measured fall 

in the range, 3.21 – 3.6 nm, where the average size lies. The total range of 

particles measured from this synthesis is 2 nm – 5.2 nm. Below in Figure 13, 

the atomic spacing was measured to confirm the presence of platinum in the 

particles. The atomic spacing was 2.1 Angstroms, which is characteristic 

when platinum is present. 

 

Figure 13. Atomic Spacing Of 3.4 nm Particles 
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3.1.3 Platinum Nanoparticle Results (3.3 nm Unwashed) 

 

Figure 14. TEM Images Of 3.3 nm Pt Particles. A: 2 nm Scale Bar, B: 

10 nm Scale Bar, C: 20 nm Scale Bar  

 

Seen above in Figure 14, it is confirmed that spherical particles were 

formed during the synthesis of 3.3 nm Pt particles. Using the same method 

as the previous sizes observed, 100 particles were measured to find the size. 

Figure 15A shows the size distribution of the measured 100 particles. The 

average size of the unwashed Pt particles is 3.3 + 0.74 nm. The range of the 

3.3 nm Pt particle size is between 2.1 – 5.2 nm.  
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Figure 15. A: 3.3 nm Size Distribution, B: Atomic Spacing Of 3.3 nm 

Particles  

 

Figure 15B shows the atomic spacing of the 3.3 nm unwashed Pt 

particle size.  The atomic spacing was found to be 2.3 Angstroms, this length 

is characteristic of platinum  and confirms the presence of Pt in this particle 

size. The unwashed 3.3 Pt particle size was synthesized to prove the 

effectiveness of the washing sequence. More information about this 

experiment can be seen in the temperature – programmed experiments 

section. 

Average Size – 3.3 nm 

Standard Deviation – 0.74 
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3.1.4 Platinum Nanoparticle Results (4.3 nm) 

 

Figure 16. TEM Images Of 4.3 nm Pt Particles. A: 2 nm Scale Bar, B: 
10 nm Scale Bar, C: 20 nm Scale Bar  

 

The particles seen in Figure 16 represent the 4.3 nm particles at 

different magnifications. The pictures above confirm the synthesis of 

spherical nanoparticles and the measurement of this particle size is 

confirmed as an average of 4.3 nm. The standard deviation of this particle 

size is 0.74 nm. Figure 11A shows the size distribution of this 4.3 nm Pt 

particle size and the range of the particles measured is between 2.5 – 7 nm. 

About two – thirds of the particles measured fall in the range of 3.51 – 4.5 

nm, where the average lies.   
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Figure 17. Atomic Spacing Of 4.3 nm Particles 

 

 Figure 17 shows the atomic spacing for one of the 4.3 nm Pt particle 

size. The atomic spacing of this particle size is 2.2 Angstroms, which is 

characteristic of platinum. An atomic spacing that is characteristic of 

platinum confirms that the particles seen in the TEM images in Figure 15 are 

platinum nanoparticles. 
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3.1.5 Platinum Nanoparticle Results (6.8 nm) 

 

Figure 18. TEM Images Of 6.8 nm Pt Particles. A: 2 nm Scale Bar, B: 
10 nm Scale Bar, C: 20 nm Scale Bar  

 

TEM images of different magnifications seen in Figure 18 confirm the 

synthesis of spherical particles. Figure 11B shows the size distribution of the 

largest size of synthesized nanoparticles. The average size of the largest 

particle size is 6.8 nm with a standard deviation of 0.94 nm. The size of the 

particles ranged from 5 nm – 10 nm and one – third of the particles 

measured fell between 6.26 – 6.88 nm.   



www.manaraa.com

 

53 

 

 

Figure 19. Atomic Spacing Of 6.8 nm Particles 

  

The atomic spacing of a particle, Figure 19, was measured, by Yusuf 

Emirov, to be 2.3 Angstroms. This length is characteristic of platinum, which 

proves that platinum is present in this nanoparticle.  Figure 19 shows the 

image which measures the size as well as the atomic spacing of a particle.  
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3.2 XRD Experiment (6.8 nm) 

 

Figure 20. XRD Results Of 6.8 nm Pt Particle 

 

 An XRD experiment is compared spectrum to confirm the presence of 

certain metals in the particles being measured. Figure 20 shows the results 

of the 6.8 nm XRD experiment. This experiment was performed to prove the 

existence of Pt in the solution synthesized and find the crystallographic plane 

that is most prevalent (Brandon). The plane that is most prevalent is the 

plane with the most intense signal. Figure 20 shows that the (111) plane is 

the most prevalent. The signals shown in Figure 20 were compared to a 

reference pattern for Pt from the Xpert Highscore Database. The reference 

pattern matched fairly well with the pattern seen above.  
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3.3 Temperature – Programmed Experiments Results 

 Three different types of temperature – programmed experiments were 

performed, an inert, oxidation (10% oxygen in helium), and reduction (10% 

hydrogen in helium). Temperature – programmed experiments are 

performed to see the types of fragments that come off in different 

environments. These fragments and the temperatures the fragments are 

seen at are compared to the literature for consistency. Before these 

experiments were performed, the 3.4 nm washed particle size and the 3.3 

nm unwashed particle size were supported on silica (2% Pt).  After the 

particle sizes were supported and dried, they were ground into a fine powder 

for use in the mass spectrometer. 

3.3.1 Temperature – Programmed Inert 

 

Figure 21. 3.4 nm 2% Pt Particles Washed Inert Experiment 

Temperature 

H
2
O 
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This experiment involves heating the silica – immobilized washed 

platinum nanoparticles sized 3.4 nm and performed an inert, helium only, 

temperature – programmed experiment. When an inert gas, helium, is flown 

over a catalyst a reaction will not occur, as seen in Figure 21. The little 

amount of water seen in this experiment is desorption of water from the 

silica support.  

3.3.2 Temperature – Programmed Reduction (TPR) 

 

Figure 22. 3.4 nm Particles Washed TPR 

  

The second experiment performed was temperature – programmed 

oxidation, 10% hydrogen in helium. During this experiment, it is expected 

that PVP and hydrogen will react to form water, methane, and other similar  
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methane fragments, CH3. The small amount of water and methane formed 

proves that the particles were effectively washed. The abundance for all 

three molecules is under 0.2 a.u. 

 An experiment was performed by Borodko, et al. that studied the PVP 

decomposition of PVP on Pt particles in an H2/argon environment. It was seen 

that the decomposition occurred above 200oC (Borodko, Lee and Joo). As 

seen in Figure 22 above, the decomposition also occurs after 200oC. 

Therefore, the results seen above are comparable to results seen previously 

in the literature.  

 

3.3.3 Temperature – Programmed Oxidation (TPO): 

Washed – 3.4 nm And Unwashed Particles – 3.3 nm  

Figure 23. Washed 3.4 nm Particles TPO. Ramped At 10oC/min To 

600oC And Held For One Hour 
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Temperature – programmed oxidation was performed for washed and 

unwashed particles. When PVP and oxygen are reacted together, carbon 

dioxide, carbon monoxide, and water are formed. The amount of PVP 

remaining on the particles is indicated by how much carbon dioxide, carbon 

monoxide, and water is formed. In Figure 23, only a small amount of carbon 

dioxide, carbon monoxide, and water is formed, under 0.2 a.u. for all three 

molecules. 

 

Figure 24. Unwashed 3.3 nm Particles TPO. Ramped At 10oC/min To 

600oC And Held For One Hour  

 

Figure 24, on the other hand, shows the same experiment using 

unwashed Pt particles. The amount of carbon dioxide, carbon monoxide, and 

water formed during this experiment is six times larger than the TPO 

experiment on the washed 3.4 nm particles immobilized on silica. This 
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difference proves that there is a much larger amount of PVP present on the 

unwashed particles and that the washed particles are effectively washed 

using the procedure seen in Chapter 2. 

Another study was performed by Borodko, et al., to look at the 

decomposition of PVP in an oxygen atmosphere and Borodko’s experiment 

showed that PVP decomposition occurs above 100oC (Borodko, Lee and Joo). 

This is comparable to the study seen in Figure 24, the decomposition started 

around 100oC. 
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3.4 Non – Sulfur Ethylene Hydrogenation Results 

3.4.1 Experimental Graphs 

 

Figure 25. 2.0 nm Non – Sulfur Results: Ethylene Hydrogenation. 
(Bypass Performed At RT And Reaction Performed At 40oC)  

  

For each non – sulfur experiment a bypass of the catalyst and a 

reaction over the catalyst was performed. The non – sulfur experiments were 

performed to ensure the particles were poisoned in the sulfur experiments. 

Both mass – to – charge of 26 and 28 are combinations of ethane and 

ethylene fragments and mass – to – charge of 30 indicates only the ethane 

molecule. Before the reaction begins, mass – to – charge  of 30 has an 

abundance near zero and at steady state mass – to – charge of 28 has an 
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abundance of 0.5 and mass 26 has an abundance of 0.3. The absence of 

mass – to – charge of 30 confirms that there is no reaction occurring during 

the bypass.  

During the reaction mass – to – charge 30 and mass – to – charge 28 

and mass – to – charge 26 decreases until steady – state is reached. The 

formation of mass – to – charge 30 confirms that a reaction occurs when the 

gases are flown over the catalyst. The decrease of mass – to – charge 26 

shows that mass – to – charge 26 is composed of more ethylene than 

ethane. The increase of mass – to – charge 28 on the other hand shows that 

mass – to – charge 28 is mainly composed of ethane. At steady state, mass 

– to – charge 30 had an abundance of 0.3 a.u., mass – to – charge 26 had 

an abundance of 0.35 a.u., and mass – to – charge 28 had an abundance of 

0.75 a.u. The other non – sulfur experiments, seen in figures 26, 27, and 28, 

behaved similarly to the experiment described above. 
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Figure 26. 3.4 nm Non - Sulfur Results: Ethylene Hydrogenation. 
(Bypass Performed At RT And Reaction Performed At 40oC)  
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Figure 27. 4.3 nm Non - Sulfur Results: Ethylene Hydrogenation. 
(Bypass Performed At RT And Reaction Performed At 40oC)   
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Figure 28. 6.8 nm Non - Sulfur Results: Ethylene Hydrogenation. 

(Bypass Performed At RT And Reaction Performed At 40oC)  

 

3.4.2 Experimental Tables 

 

Table 7. Ethylene Hydrogenation Conversion (40oC): No Sulfur 

Size of Nanoparticle (nm) Conversion (%) 

2.0 75.6 

3.4 42.3 

4.3 69.9 

6.8 79.1 
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The gases are fractionated in for the non – sulfur experiments as 

explained above. This makes finding the conversion a little more difficult. 

Equation 4 was used for both non – sulfur TOF calculations and sulfur TOF 

calculations. 

 

 

Equation 4 

 

Table 8. Ethylene Hydrogenation TOFs (40oC): No Sulfur 

Size of Particle (nm) TOF (s-1) 

2.0 13.94 

3.4 10.26 

4.3 11.22 

6.8 13.81 

 

A study performed by Kuhn, et al. used Pt nanoparticles showed 

similar results to the values seen in Table 8. In the literature, for the size 

range of 2.0 – 5.0 nm, the values seen for TOF(s-1) range from 11.4 – 15.3. 

As seen in Table 8, the values for TOF (s-1) from the same range of sizes fall 

in the range seen in the literature, 11.22 – 13.94. The very similar results 

show that the experimental values and literature values agree with one 

another. In both cases, the TOF values compared to size can be considered 



www.manaraa.com

 

66 

 

fairly constant. These results are comparable because and ethylene 

hydrogenation reaction was also performed in the literature and the 

synthesis conditions for sizes 2.0, 3.4, and 4.3 were similar to the process 

seen in the literature (Kuhn, Huang and Chia - Kuang).  

The 6.8 nm particles synthesis was not taken from the literature and 

instead was synthesized by assuming that adding another seeded growth on 

the 4.3 nm, similar to the process of seeded growth for the 3.4 to 4.3 nm 

particles, would produce larger particles. For this reason, there is no 

literature value to compare ethylene hydrogenation of the 6.8 nm particle to 

the experimental value seen above. Although, since the values for the 2.0 – 

4.3 nm TOF(s-1) are very similar it can be assumed that the TOF (s-1) value 

for 6.8 nm size should be similar to the smaller three sizes. It can be seen in 

Table 8, that the TOF value for the 6.8 nm size falls in the range for the 

smaller sizes, this proves that the TOF is similar to the other smaller sizes 

seen. It can be concluded that the TOF value for ethylene hydrogenation 

without sulfur for sizes 2.0 – 6.8 nm is fairly constant when compared with 

size.  

3.5 Sulfur Ethylene Hydrogenation Results 

3.5.1 Sulfur Concentration Used Calculation 

To calculate the total ppm of sulfur used during the experiment the 

vapor pressure of thiophene must be calculated. Using the equation seen in 

Perry’s Chemical Engineering Handbook, 6th edition, the vapor pressure of 

thiophene can be calculated at the chemical’s temperature, 297.15 K.  
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Equation 5 

 

At 297.15 K the vapor pressure of thiophene is 10.52 kPa. To calculate 

the ppm of sulfur used in the experiment multiply the vapor pressure of 

thiophene by the thiophene flow fraction (1/201) and 1E6. At room 

temperature this resulted in a sulfur concentration of 492.25 ppm. 

3.5.2 Results Of Gas Chromatography Experiments 

Table 9. Averaged Steady State Bypass Results For Sulfur 
Experiments 

Size of Particle (nm) Area of C2H4 (a.u.) Area of C2H6 (a.u.) 

2.0 33920 0  

3.4 32680 0 

4.3 32879 0 

6.8  32828 0 

 

Table 10. Average Steady State Reaction Results For Sulfur 
Experiments 

Size of Particle (nm) Area of C2H4 (a.u.) Area of C2H6 (a.u.) 

2.0 32384 624 

3.4 32728 467 

4.3 32515 467 

6.8  32612 435 
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Tables 9 and 10 show the averages for the steady state values of the 

areas under the curve for both ethane and ethylene during the gas 

chromatography sulfur experiments. During the bypass experiments, there 

was no signal for ethane seen. This indicates that signals during the ethylene 

hydrogenation gas chromatography experiments there is no conversion 

during the bypass portion. This also indicates that the gases during the 

reaction portion of the experiment are not fractionated and the entire 

ethylene signal is only ethylene and the entire ethane signal is only ethane. 

The gases for the gas chromatograph are not fractionated resulting in easier 

calculations for the conversion. 

 

Table 11. Conversion Values For Sulfur Experiments 

Size of Particle (nm) Conversion (%) 

2.0 2.3 

3.4 1.4 

4.3 1.3 

6.8  1.3 

 

 

Equation 6 
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Table 12. TOF For Sulfur Experiments 

Size of Nanoparticle (nm) TOF (s-1) 

2.0 0.008 

3.4 0.021 

4.3 0.032 

6.8  0.037 

  

A study performed by Rioux, et al. performs an ethylene 

hydrogenation reaction with and without carbon monoxide poisoning. The 

sizes of the Pt particles in this study range from 1.7 – 7.1 nm. When the 

catalyst is poisoned the turnover frequency decreased when the particles 

were poisoned (Rioux, Komor and Song). Similar to the literature, when the 

Pt particles were poisoned, in this case with sulfur, the turnover frequency 

decreased as compared to when the particles were not poisoned when 

performing an ethylene hydrogenation reaction.  
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3.6 Sulfur Tolerance Of Platinum Nanoparticles 

 

Figure 29. Comparison Of Sulfur Vs. Non - Sulfur Results 

 

Figure 29 shows the final results of the ethylene hydrogenation 

reactions with and without sulfur. The TOF of the non – sulfur experiments 

range from 10 – 14 s-1. Since all the TOFs are in the same magnitude, it can 

be said that these results are fairly constant as a function of catalyst size. 

Similar results were seen in a study by Kuhn et al. also showed that during 

an ethylene hydrogenation reaction without any poisoning present that the 

TOF is constant with changing size of Pt nanoparticles. 
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 The sulfur experiment portion of the graph shows a different story. 

The magnitudes of the TOF for sizes 3.4 – 6.8 nm are all the same. It could 

be said that the TOF is fairly constant with increasing size and there is an 

additional reason that the 2 nm experiment is one magnitude smaller than 

the others. On the other hand, it is seen that for all four sizes that when the 

Pt nanoparticles are poisoned with sulfur the TOF increases with increasing 

size. This leaves two possible explanations for how the size affects a Pt 

nanoparticle when it is poisoned with sulfur. One of the explanations is that 

the sulfur tolerance of platinum nanoparticles is not affected by changing 

nanoparticle size. The other explanation is that the sulfur tolerance increases 

with increasing size of Pt nanoparticles.  

 The sulfur tolerance being unaffected by the size of the nanoparticles 

could be explained by the different synthesis technique and washing 

technique used on the 2 nm Pt particles. The PVP of the 2 nm particle size 

could have not been effectively washed. This could cause the Pt particles to 

have less activity when poisoned due to the PVP blocking some of the active 

sites where the reaction could occur. By this logic, it would be expected that 

the non – sulfur experiment would also have less activity, which was not the 

case. The 2 nm non – sulfur experiment had a TOF of 13.94 s-1, which was 

the highest seen for all sizes during the non – sulfur experiments. 

To test the theory of the PVP not being effectively washed off the 2 nm 

particles, two TPO experiments were performed one on unwashed 2 nm Pt 

particle and one on washed 2 nm Pt particle. Figure 30 and 31 show the 
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results of both the washed and unwashed TPO experiments. Figure 30 shows 

that there was oxidation of PVP that started to occur at 400oC. Normally, as 

mentioned above, PVP decomposes above 100oC and here PVP is seen to 

decompose at 400oC, which is consistent with the literature (Borodko, Lee 

and Joo). Figure 31 on the other hand shows the opposite effect. Figure 31 

does not show any abundance of CO2, CO, and H2O, until in the 600oC range 

where there is a small amount of H2O. This is higher than what is seen in the 

3.4 nm particles and this could be due to the difference in size of the 

particles. This small amount of water is due to water that absorbed onto the 

catalyst from the atmosphere. From analysis of Figure 30 and 31, it is 

concluded that the particles were effectively washed. Therefore, the TOF of 

the 1.5 nm particles was not lower because the particles were not effectively 

washed. This means that sulfur tolerance of Pt nanoparticles is not fairly 

constant with size and that there is some size effect present. 
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Figure 30. Unwashed TPO 1.5 nm Experiment. (Held At 600oC For One 

Hour, Ramped At 10oC/min From RT)  
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Figure 31. Washed TPO 1.5 nm Experiment. (Held At 600oC For One 
Hour, Ramped At 10oC/min)  

 

 This leaves the explanation that sulfur binds more strongly to the 

smaller particles (Wang and Iglesia). A face – centered – cubic (FCC) 

molecule, such as (111) Pt, has a coordination number of 12 for its center 

molecule. There are 6 molecules directly surrounding the center molecule, 

three molecules in contact on the top of the center molecule, and three 

molecules in contact on the bottom of the molecule. A surface molecule has a 

coordination of 9, since it will not have the top three molecules. Coordination 

number is the number of nearest neighbors a molecule will have (i.e. the  
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number of bonds a molecule could make). Below in Table 13 give roughly the 

coordination number of each size of Pt nanoparticles synthesized (Che and 

Bennett). 

 

Table 13. Coordination Numbers (Che and Bennett) 

Size of Pt Particle (nm) Coordination Number 

2.0 4.5 

3.4 7.7 

4.3 8.1 

6.8 8.6 

 

As seen in Table 13, as the particle size increases the coordination 

number will increase and eventually steady out. If the coordination number is 

larger in an FCC material (where total possible coordination number is 12 as 

mentioned above), there will be spots for a reaction intermediate to bond. 

Other the other hand, smaller particles will have less neighboring molecules, 

leaving more spaces for additional molecules to bond to the Pt molecule. The 

smallest Pt molecule has a coordination number of 4.5 this means that sulfur 

has the opportunity to bond more strongly to the molecule because there are 

more bonds available. If the sulfur binds more strongly, this will cause less 

activity as seen in an experiment done by Wang et al. and the experiments 

performed above (Wang and Iglesia). As the size of the particle increases, 

the coordination number will steady out resulting in less change in the 
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coordination number, as seen in Table 13 (Che and Bennett). This will cause 

a smaller increase in the activity as a function of particle size as the 

coordination number reaches steady state. This in turn, shows that the larger 

Pt particles are more sulfur tolerant. 

In addition, Figure 32, shows the difference in the rate between the 

sulfur and non – sulfur experiments. It is expected that, as seen, the rate of 

the particles will decrease as size increases. This is due to the dispersion, 

which also decreases as particle size increases. Dispersion is the number of 

surface atoms over the number of total atoms in the particle. As dispersion 

increases, the amount of atoms exposed increases which will increase the 

rate. The rate is increased because “intrinsic catalytic activity, as a general 

rule, proportional to the concentration of active sites available for catalysis”. 

This means when a catalyst is not affected by poisoning, coking, etc., the 

activity of the catalyst should decrease with increasing size (Bartholomew). 
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Figure 32. Non - Sulfur And Sulfur Rate Vs. Particle Size 

 

In the case of the rate for the sulfur experiments, a maximum is seen 

at the 4.3 nm particles and a minimum at the 2 nm particle size. Since the 

rate is the highest for the non – sulfur experiment and the smallest when 

poisoned, it can be said that during hydrogenation when poisoned by sulfur 

the smallest particle is not the best to use. The rate of the 2 nm Pt particles 

is affected more by being poisoned than any of the other sizes tested.
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Chapter 4: Conclusions 

In conclusion, this project has shown that sulfur tolerance does change 

as a function of particle size. The larger particles are more sulfur tolerant 

than the smaller particles. Although the 6.8 nm particle has the best TOF, in 

application of using a catalyst in industry, the rate of the catalyst is usually of 

the most concern.  If the current results were to be applied to a more cost 

effective bi – metallic catalyst, the 4.3 nm Pt particles would be a good size 

to start experimenting. As the size of the particle increased, the activity of 

the particle increased due the sulfur bonding more strongly to the smaller 

particles. This will cause less activity. Resolution of this issue can move the 

project into other areas. These areas include, bi – metallic catalyst synthesis, 

testing of the catalyst in an actual fuel stream with low sulfur concentration 

to test removal capabilities, or testing the best size (4.3 nm) with various 

supports to make sure silica is the best to use.
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